
MICROWAVE BACKGROUND: PHYSICS OF THE SPECTRUM

G. JUNGMAN

ABSTRACT. The purpose of this first lecture on the µ-wave background
radiation is to develop some of the physics related to the black-body
spectrum. This includes time-scales for important processes, decou-
pling/recombination calculations, residual ionization, the phenomenol-
ogy of spectral distortions, and some discussion of the current state of
spectral observations. Temperature fluctuations will not be examined
here but will be covered in later lectures.
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1. INTRODUCTION

The present universe is filled with leftovers from earlier times, and the hot
big bang insures that, to a first approximation, these leftovers have a rela-
tively simple structure, having started in a hot thermal state. These leftovers
are selectively cooled and ”frozen-out” of the primordial gas, in successive
stages of evolution.

We have seen how various nuclear burning processes freeze-out at tempera-
tures T . 1 MeV, leading to the production of light nuclei, notably helium
and deuterium.

A similar story applies to the ionization density of the Universe. When
the temperature drops, the ionization density decreases sharply and then
freezes out. Because the residual ionization is quite low, the Universe be-
comes transparent to radiation. We would then expect to see a stream of
photons coming from all directions in the sky, emitted from a (somewhat
fuzzy) sphere at cosmological distance. So a relic radiation background is
a necessary consequence of a hot big bang. Of course, the nature of the
radiation spectrum remains to be determined. In this lecture, we will ver-
ify these statements and show how everything works out to produce a relic
black-body spectrum.

Recall that a thermal spectrum of photons (a black-body spectrum) has an
evolution in an expanding universe which is completely described by the
temperature scaling

T (t1)

T (t2)
=
a(t2)

a(t1)
=

1 + z(t1)

1 + z(t2)
,

where a(t) is the scale factor and z(t) is the redshift. This relation was
understood by Tolman in 1936, although there is no indication that the pos-
sibility of a radiation background was considered at that time.

This scaling relation holds as long as the radiation is either thermodynami-
cally dominant or uncoupled. In particular, an uncoupled radiation compo-
nent simply redshifts indefinitely into the future.

2. A HISTORICAL GUESS FOR THE BACKGROUND TEMPERATURE

The first serious consideration of the hot big bang was the investigation
of light element nucleosynthesis by Gamow (1946, 1948) and Alpher and
Herman (1948). Nucleosynthesis constrains the baryon density, and Alpher
and Herman pointed out that this can be used as a chronometer to determine
the amount of redshift which must have occured since nucleosynthesis. The
argument works as follows.
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First we boil down all of nucleosynthesis to the following observation. The
most important reaction is the first step,

p+ n←→ d+ γ.

This step is important both because it is first and because the relatively
low binding energy of the deuteron makes photo-dissociation by the reverse
reaction a key bottleneck.

Gamow’s basic observation about nucleosynthesis was that this reaction
must be effective, but not too effective, at the time of nucleosynthesis.
Clearly it must have some effect, or nothing happens. If it is too effective,
then the light elements burn away. So the Gamow criterion is

〈σv〉nB(tnuc)tnuc ≈ 1,

at the temperature where deuterium production can really begin, Tnuc ≈
109 K ≈ 0.1 MeV. Recall that the Einstein equation in a radiation-dominated
universe gives

H(t)2 =
8π

3
GρRAD =

8π

3

π2

30
g∗
T 4

m2
Pl

,

=⇒ t−1 ' H = 1.7g1/2
∗

T 2

mPl
,

=⇒ t−1
nuc ' 4× 10−24 MeV,

' 5× 10−3 sec−1,

The averaged cross-section at 0.1 MeV is 〈σv〉 ≈ 10−31 cm2. So we deter-
mine the baryon density as

nB(tnuc) ≈ t−1
nuc〈σv〉−1

≈ 2× 1018 cm−3.

This completes our poor-man’s nucleosynthesis calculation. If we now use
an estimate for the current baryon density, we can obtain the expansion fac-
tor since nucleosynthesis, and therefore obtain the redshift. From estimates
of the mass to luminosity ratio of the Universe we know, roughly,

nB(tnow) ≈ 5× 10−8 cm−3.

Use the relation which is equivalent to number conservation,

Tγ(tnow)

T (tnuc)
=
a(tnuc)

a(tnow)
=

(
nB(tnow)

nB(tnuc)

)1/3

,

and so Tγ(tnow) ≈ 5K. This is a surprisingly (suspiciously) good number.
It is also coincidentally the number obtained by Alpher and Herman after a
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more careful estimate. Note that we assumed part of what we want to show
later, which is that the radiation is either thermodynamically dominant or
uncoupled; otherwise we could not have used the T ∝ a−1 scaling.

Perhaps the most remarkable aspect of this estimate, from a modern per-
spective, is the fact that it essentially vanished into obscurity for almost
twenty years.

Theory can probably do a little better now than Alpher and Herman. But it
makes more sense to measure the current radiation temperature and use it
as a fundamental input for cosmology. This measured temperature is a very
well-determined quantity, Tγ(tnow) = 2.728± 0.002 K, a global average.

3. THERMAL IONIZATION HISTORY

Leaving nucleosynthesis in the past, we eventually come to a time when the
temperature was about 1 eV. This occurs at an approximate age

t1 eV ' 200 sec

(
0.1 MeV

1 eV

)2

' 2× 1012 sec ' 105 yr.

In fact, this is not quite right because we have assumed radiation domina-
tion. It turns out that, also around this time, the matter and radiation energy
densities are becoming comparable. The form for the Hubble expansion
which displays this crossover from radiation to matter domination is

H−1 =





1.5× 1012 sec
(

1 eV
Tγ

)2

, t < tEQ

1.1× 1012 sec
(

1 eV
Tγ

)3/2

(Ω0h
2)
−1/2

, t > tEQ.

Matter-radiation equality occurs at a temperature

TEQ ' 5.5 eV Ω0h
2

(
2.75 K

Tγ(tnow)

)3

.

As discussed above, we expect the ionization to drop suddenly when the
temperature falls into the eV range, as ions and electrons combine to form
neutral atoms. This is a fairly naive picture of what is happening because we
really must check the various thermalization conditions that are implicitly
assumed. But let’s pursue this picture far enough to obtain an estimate for
the temperature at which the ionization fraction becomes small.

We will assume that the Universe consists purely of protons and electrons,
and that the number densities of these species are given by equilibrium val-
ues. Recall that equilibrium number densities for non-relativistic particles
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have the form

n = g

(
mT

2π

)3/2

exp

(
µ−m
T

)
.

Combining the number densities for protons, electrons and neutral hydro-
gen atoms we get

nenp
nH

=
gegp
gH

(
T

2π

memp

mH

)3/2

exp

(
µe + µp − µH +mH −me −mp

T

)
.

By assumption the reaction p+e←→ H+γ is in equilibrium. So µe+µp =
µH . Also, mp ' mH , and mH −me −mp = −BH ' −13.6 eV. So

nenp
nH
' gegp

gH

(
meT

2π

)3/2

exp

(
−BH

T

)
.

Define nH = (1−x)nB ; ne = np = xnB . Also note that ge = gp = 2. Less
obvious is the choice gH = 4; we could treat the hyperfine states separately,
but the fine and hyperfine splitting is so low that we obtain the same result
if we lump them together at the start. So we have

x2

1− x '
(
meT

2π

)3/2
1

nB(T )
exp

(
−BH

T

)
.

This is the Saha equation, which gives the ionization fraction for our thermal
plasma of protons and electrons.

Recall the definition η ≡ nB/nγ . Also, the number density of thermal
photons is given by

nγ =
2ζ(3)

π2
T 3
γ .

So we can write

x2

1− x '
π2

2ζ(3)

1

(2π)3/2
η−1 exp

(
−BH

T

)(me

T

)3/2

.

Notice the large factor of η−1. This factor has the same origin as it did
in similar expressions for nucleosynthesis; the Universe has so many more
photons than baryons that entropy wins over energy until the temperature
becomes quite low.

Using the measured background radiation temperature to fix the ratio at
present times, we can write η ' 2.68× 10−8ΩBh

2. So now we can see the
large factor in the Saha equation explicitly,

x2

1− x ' 1.77× 1017

(
ΩBh

2

0.02

)−1(
1 eV

T

)3/2

exp

(
−BH

T

)
.
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Take ΩBh
2 = 0.02 for example. Then we obtain the results shown in the ta-

ble.

x T (eV)

0.92 0.35
0.65 0.33
0.14 0.30

0.031 0.28
0.0018 0.25

2.4× 10−6 0.20

So the thermal prediction for the ionization drops
rapidly at temperatures close to 0.28 eV; the de-
pendence of this temperature on ΩBh

2 is loga-
rithmically weak. The redshift at this tempera-
ture is z ' 1300. But note that the redshift range
over which this ionization drop occurs is not neg-
ligible; δz ≈ 100.

This process of loss of ionization and formation
of neutral hydrogen is called recombination. The
decoupling of radiation is logically distinct from
recombination, since it depends on the mean free path for photons; however,
we will continue to think of these events as simultaneous in this section.

If decoupling happened instantaneously, then clearly the relic background
spectrum would be thermal. But we see that recombination is not instan-
taneous, and one can guess, correctly, that decoupling is not instantaneous
either. Therefore the temperature of the matter and the temperature of the
radiation are evolving through this time, and the source of the relic radiation
is smeared throughout this window in time.

At this point we should begin to worry a little. The matter is non-relativistic,
so we might expect decoupling to smear the radiation spectrum in some
way which is not consistent with a black-body spectrum. Even worse, the
Universe is probably matter-dominated at this time. What is going on here?

The key is to realize two things. Firstly, there is a difference between en-
ergy dominance and thermodynamic dominance. Secondly, we know that
the photon bath has a very large heat capacity compared to the matter, and
it carries a large amount of entropy, so we expect it to dominate thermody-
namically. We can see how this happens in a simple model. The calculation
for this model is instructive. Consider a system consisting of a thermal
radiation field in equilibrium with a non-relativistic gas,

ρ = nMm + (γ − 1)−1nMT + αT 4,

p = nMT +
1

3
αT 4.

The equation of energy conservation,∇aTab = 0, is

dp

dt
a(t)3 =

d

dt

(
a(t)3(ρ+ p)

)
.
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=⇒ a(t)3dρ+ 3a(t)2(ρ+ p)da = 0,

=⇒ d

da

(
ρa3
)

+ 3pa2 = 0,

=⇒ d

da

(
nMma

3 + (γ − 1)−1nMTa
3 + αa3T 4

)
= −3nMTa

2 − αa2T 4.

By number conservation, nMa3 is constant. So

(γ − 1)−1nMa
3 da

dT
+ α

(
4a3T 3dT

da
+ 3a2T 4

)
= −3nMa

3T

a
− αa2T 4,

=⇒ a

T

dT

da

(
(γ − 1)−1nMa

3 + 4αa3T 3
)

= −3nMa
3 − 4αa3T 3,

=⇒ a

T

dT

da
= −

(
1 + 4

3
α T 3

nM
1
3
(γ − 1)−1 + 4

3
α T 3

nM

)
.

But
3

4

nM
αT 3

=
3

4

30ζ(3)

π4

nM
nγ

= cη; c ' 2.03.

So
a

T

dT

da
= −

(
1 + (cη)−1

1
3
(γ − 1)−1 + (cη)−1

)
.

This is the result we need. When η is very small we have

d lnT

d ln a
= −1 =⇒ T (t)a(t) = constant.

This is a demonstration of a general fact that we have mentioned before.
If the matter is in thermal contact with the radiation, and if the number
density of the matter is relatively small, so that the entropy is dominated by
the radiation, then the thermodynamics is dominated by the radiation. This
is completely independent of which component may happen to dominate
energetically.

Simply put, the photons overwhelm the matter by force of numbers, and the
matter fails to have a thermodynamic will of its own; its temperature scal-
ing is locked to the radiation temperature scaling. Therefore, under these
circumstances, it does not matter how decoupling occurs. As long as the
charged particles from which the photons scatter have the same tempera-
ture scaling as the radiation, the radiation spectrum at any time downstream
will be precisely black-body.

Because we know that η is small for our Universe, this conclusion will fail
to hold only if the matter loses thermal contact with the radiation. When
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this happens, the assumption that the temperatures are the same is violated,
and we obtain the scaling that we expect for matter alone,

d lnT

d ln a
= −3(γ − 1) =⇒ T (t)a(t)3(γ−1) = constant,

or T (t)a(t)2 = constant for the usual γ = 5/3.

So now the question arises as to whether or not the matter is in thermal
contact with the radiation. No equilibrium arguments suffice to answer this,
so we must move on to dynamical estimates.

4. THERMAL COUPLING OF MATTER AND RADIATION

We begin this discussion by cataloguing the important processes in the
plasma. Of course, this will be a simplified picture, but we will be able
to demonstrate what we need from what is given here.

4.1. Coulomb collisions. First we note that the charged particles manage
to remain thermal, whether coupled to radiation or not. To check this, note
that Coulomb scattering gives a time-scale

tCoulomb =
1

ne〈σv〉
≈ 1

xnB

(m
T

)1/2 (αem
T

)−2

.

The absolutely longest time-scale will be for proton-proton collisions be-
cause of the mass dependence, and for these we get

tpp ≈ 5000 sec

(
1 eV

T

)3/2
1

x

1

ΩBh2
.

In fact, the true time-scale is even shorter because protons will equilibrate
by scattering off electrons. Also, I left a large ”Coulomb log” out of the
cross-section, which depends on screening effects. In any case, clearly this
time-scale is much shorter than H−1 at this time. So the charged particles
have no trouble remaining thermal for a long time, as long as the ionization
fraction is not very small.

4.2. Thomson scattering. This is the non-relativistic limit for e + γ −→
e+ γ.

σT =
8π

3

(
αem
me

)2

,

' 0.0017 MeV−2 ' 6.6× 10−25 cm2.

We want to be careful about how we treat the matter and the radiation.
There are really two time-scales of interest. One is the mean free time for
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photons in a background electron density; the other is the mean free time
for electrons in the background radiation. The mean free time for photons
is

tT,γ ' 3.1× 109 sec

(
1 eV

T

)3
1

x

0.02

ΩBh2
.

The mean-free time for electrons is

tT,e ' 1.7 sec

(
1 eV

Tγ

)3

.

Both of these time-scales are short compared to the Hubble time. Therefore
Thomson scattering is effective throughout this era. But we have a problem
here. Thomson scattering is large because it involves no energy transfer; en-
ergy transfer can occur only if we allow relativistic effects. Without energy
transfer, Thomson scattering simply randomizes the directions of photons
but has no effect on their energy distribution.

4.3. Compton scattering. Compton scattering is the fully relativistic re-
sult for which Thomson scattering is the non-relativistic limit. Energy trans-
fer occurs at order (v/c)2 or T/m, where T is the temperature of the elec-
tron bath. Therefore

tCompton,γ ' tT,γ
me

Te
' 1.6× 1015 sec

(
1 eV

Tγ

)4
1

x

(
0.02

ΩBh2

)
Tγ
Te
,

tCompton,e ' tT,e
me

Te
' 8.6× 105 sec

(
1 eV

Tγ

)4
Tγ
Te
.

Therefore

ΓCompton,γ

H
' x

(
T

3.3 eV

)2
ΩBh

2

0.02
,

ΓCompton,e

H
' 1.3× 106

(
Ω0h

2
)−1/2

(
Tγ

1 eV

)5/2
Te
Tγ
,

' 8.1
(
Ω0h

2
)−1/2

(
Tγ

100 K

)5/2
Te
Tγ
.

And so we see that the electron mean free time is quite short, but the photon
mean free time is becoming comparable to the Hubble time at temperatures
below about 3 eV.

Note that there is a further issue with Compton scattering. Energy transfer
allows photons to be moved from one energy bin to another. But there is
no change in the total photon density. Therefore, if the photon distribution
happened to have a number density inappropriate for a thermal distribution
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at the given temperature, then the photon distribution could never reach a
black-body by the action of Compton scattering alone. This will be relevant
for us later. In the interim we will assume that the number density is correct,
which is consistent with the photon distribution starting as thermal at some
higher temperature.

4.4. Free-Free Processes. Free-free processes are bremsstrahlung and the
inverse absorption process. Free-free processes require a spectator body,
such as a proton, to get the necessary acceleration,

p+ e←→ p+ e + γ.

So the rate is proportional to the square of the ionization density. Free-free
processes would require a lecture of their own, and the results have a strong
frequency dependence which makes them difficult to use. For example, see
[Longair, vol. 1, p. 71].

We will restrict ourselves to two observations. First, at least for frequen-
cies near the temperature, w ' T , free-free processes in the primordial
plasma can effectively process photons down to temperatures of about 1 eV.
So these processes may be relevant even after Compton scattering of pho-
tons has stopped being effective. Second, free-free processes obviously ef-
fect both photon number and energy, so they can be effective at thermalizing
radiation.

4.5. Recombination. Finally we come to the main player, the recombina-
tion reaction itself,

p+ e←→ H + γ.

For the moment we consider only recombination to the ground state.

〈σrv〉 =
4π2αem
m2
e

BH

(3meT )1/2
' 4.7× 10−24 cm2

(
1 eV

T

)1/2

.

The rate is Γ ' xηnγ〈σrv〉. But now things get a little complicated. We
must track the ionization fraction through decoupling, where it changes
rapidly. We expect x to drop rapidly and then freeze-out at some resid-
ual value, and we would like to calculate this value as well as understand
the decoupling of radiation. We will do this in the next section.

5. DECOUPLING AND RECOMBINATION

5.1. The Robust Black-Body. We now have enough information to un-
derstand what effect decoupling has on the radiation spectrum. From the
above we see that Compton scattering of photons is becoming ineffective
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at temperatures of about 3 eV. But Compton scattering of electrons is ef-
fective until very late times. This is a result of the very small value of η.
Therefore, the electron temperature is locked to the radiation temperature
throughout all of decoupling and recombination. By our previous argument,
this implies that the black-body spectrum cannot be distorted by the chang-
ing temperature and density of the charged particles. Even if every electron
is involved in scattering (and they are, based on the short electron mean free
time), only a small fraction of photons can be scattered out of the thermal
black-body. If one thinks of the photons as a heat bath, then the change in
their distribution is a finite-size effect, of order η ' 10−9.

So it seems that the black-body is immune to scattering effects during de-
coupling and recombination. This is actually not quite true. We will see
later how a distortion at high frequency can arise from hydrogen recombi-
nation.

In the next section we calculate the residual ionization fraction using the
simplest dynamic calculation of recombination. This is also the last step
that we need to verify our picture of decoupling.

5.2. Calculating the Residual Ionization Dynamically. Thermal estimates
for the ionization fraction were useful to us in understanding decoupling.
But they are completely inadequate for calculating the residual ionization,
which depends on the dynamical freeze-out of the charged particles. Fur-
thermore, we still need to check the validity of the recombination tempera-
ture that we calculated using the Saha equation.

There are a few different ways to do this. We will pick the route which
is most illustrative of the general freeze-out calculation. We begin with a
kinetic equation for the evolution of the ionization fraction.

ṅe + 3
ȧ

a
ne = −〈σrv〉(t)

[
n2
e − (n0

e)
2
]
,

where n0
e is the density in thermal equilibrium. Let s = (1 eV/T ) and write

ne = xnB . Then the above becomes

dx

ds
= − b

s2

[
x2 − (x0(s))2

]
,

where b ' 1.4× 105(ΩBh
2)(Ω0h

2)−1/2. We have assumed matter domina-
tion, which is the origin of the factor of Ω0h

2. The equilibrium ionization
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is the solution of the Saha equation

(x0(s))2

1− x0(s)
=

1

nB

(
meT

2π

)3/2

exp

(
−BH

T

)
,

= 9.4× 107η−1s3/2 exp

(
− BH

1 eV
s

)
.

The deep past corresponds to s → 0, and the future to s → ∞. We guess
from experience that there will be a sharp transition in x at some interme-
diate value of s, followed by a gradual relaxation to a constant value, the
residual ionization.

For those who know about such things, this sort of behaviour is similar to
the behaviour of boundary layer solutions. As for boundary layers, it can be
handled by matching an interior and exterior solution. The interior solution
is constructed with a singular perturbation expansion.

First we obtain the behaviour in the interior or transition region. Let ∆ =
x− x0(s). Then write the equation inthe form

ε
d∆

ds
= −dx

0

ds
− b

s2
∆(∆ + 2x0(s)).

We have inserted an ε on the derivative. The singular perturbation expansion
is asymptotic as ε→ 0. The leading term is simply

b

s2
∆(∆ + 2x0(s)) ∼ −dx

0

ds
.

∆ is much smaller than x0 as we move backward in time, and this is con-
sistent with the solution that we will determine. So we write

∆ ∼ −s
2

2b

d

ds
ln x0(s), s→ 0.

The derivative of x0 comes almost entirely from the exponential term, so

− d

ds
ln x0 ' 1

2

(
BH

1 eV

)
' 6.8.

Therefore the solution in the region of rapid variation is given by

∆ ∼ 3.4
s2

b
, s→ 0.

For large s, the exterior region, we expect x� x0. Therefore we write

dx

ds
= − b

s2
x2(1 +O((x0/x)2)).
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Integrating from some s∗ to∞, we get

1

x∞
− 1

x(s∗)
=

b

s∗
.

The point s∗ must be chosen in the exterior region, but early enough that
x(s∗)

−1 is negligible. Then the residual ionization will be

x∞ '
s∗
b
.

We choose s∗ in the matching region, where the interior and exterior solu-
tions overlap. That such a region exists is guaranteed by the theory of these
expansions. Choose s∗ to be where ∆ ' x0(s), so that the deviation from
thermal is becoming of order unity. Therefore

3.4

b
s2
∗ ' x0(s∗).

Some tedious arithmetic gives

s∗ ' 3.6− 0.074 ln
ΩB

Ω0
.

Now we have everything we need. The following table summarizes some
numbers.

ΩB/Ω0 s∗ T∗ (eV) x∞(ΩBh
2)(Ω0h

2)−1/2

0.05 3.82 0.262
0.10 3.77 0.265 2.7× 10−5

0.15 3.74 0.267

Recall the equilibrium estimate obtained from the Saha equation, T∗ '
0.3 eV. This turned out to be not such a bad estimate. Therefore simple
recombination can be reasonably estimated by equilibrium arguments. The
non-equilibrium analysis also gives us the residual ionization of the Uni-
verse, x∞ ≈ 10−4. Notice that this ionization fraction is enough to keep
the charged particles thermal by Coulomb scattering. So we predict a pri-
mordial relic of thermal ionized particles. Also, we know that these ionized
particles track the radiation temperature until very late times, say z ' 50,
by our previous estimate of the electron mean free time.

5.3. Transparency of the Universe. We have one last thing to check, which
is the assertion that the Universe is essentially transparent after decoupling
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and recombination. Recall the time-scales for Thomson and Coulomb scat-
tering of photons,

tT,γ ' 3.1× 109 sec
1

x

(
1 eV

T

)3
ΩBh

2

0.02
,

tCompton,γ ' 1.6× 1015 sec
1

x

(
1 eV

T

)3
ΩBh

2

0.02
.

The best thing to do is to integrate the scattering probability to get the opti-
cal depth. If we write each of the above in the form tX = cXx

−1 (1 eV/T )3,
then the optical depth since decoupling is

τ =

∫ tnow

tdec

dt t−1
X .

At this point we will assume that the Universe remains matter dominated for
some reasonable fraction of the time from decoupling until now, just so we
can use the definite formula t ' H−1 ' 1.1×1012 sec (1 eV/T )3/2(Ω0h

2)−1/2.
Then we have

τX '
3

2
x

1.1× 1012 sec

cX

∫ Tdec

Tnow

(
T

1 eV

)3/2
dT

T

' x

(
1.1× 1012 sec

cX

)(
Tdec

1 eV

)3/2

.

Taking the decoupling temperature to be 0.2 eV and using the relic ioniza-
tion which we calculated, x ≈ 10−4, we get an optical depth for Thomson
scattering of τT ≈ 3 × 10−3. The optical depth to Compton scattering is
clearly very small. So the Universe is indeed transparent after decoupling,
at least until low redshifts where UV radiation from star formation will be-
gin increasing the ionization fraction. Also, some photons will travel by
chance through isolated hot regions of the current Universe, such as galaxy
clusters, so one should expect some scattering off of ionized gas in such re-
gions. Compton scattering of photons in such regions is called the Sunyaev-
Zeldovich effect. At some point later in our microwave background discus-
sions we will examine this effect further.

5.4. The Truth About Hydrogen Production. Have we now finished with
decoupling and recombination? As one might guess, we have only begun.
The calculation that was made can only be considered a simplified picture.

In fact, I have lied to you. Recombination to neutral hydrogen turns out to
be tricky. The problem is as follows. Early in recombination things proceed
as we have outlined and calculated. But as the recombined fraction grows, a
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population of 13.6 eV photons grows with it. These photons cannot be ther-
malized at all. Even Compton scattering is inoperative at these temperatures
below 1 eV, so the photons cannot even be redistributed across the spectrum.
So recombination is dumping a population of photons in the frequency re-
gion corresponding to Lyman transitions. Eventually these photons have a
density comparable to hydrogen and they begin to hold up recombination
to the ground state or to excited states connected by Lyman transitions.

This seems like a real problem. How can we fix it? There are two important
effects to be considered.

• The product photons will eventually redshift out of the 13.6 eV res-
onance region. So some recombination to the ground state will con-
tinue, at a reduced rate.
• Recombination to the 2s state will also be occuring. Other similar

states are slightly relevant, but the 2s is most important. This is a
metastable state, which decays by a 2-photon transition, with a rate
Γ2s→1s ' 8.23 sec−1, compared to Γ2p→1s ' 6.25× 108 sec−1.

Of these effects, the most important is the second. So recombination is held
up waiting for out-of-equilibrium decays of the 2s state. But it eventually
finishes since we have thousands of years for the process to complete. This
hardly changes the predicted recombination temperature but it does change
the prediction for the residual ionization, decreasing it by about a factor of
3.

This non-equilibrium recombination process leaves a pile of emitted pho-
tons, smeared over a region of the spectrum near Lyman frequencies and a
little below. This region corresponds to frequencies ν ≈ 1000 GHz today.
Unfortunately, this high frequency part of the spectrum will almost certainly
never be measured since it is swamped by dust emission in the Galaxy.

To do the calculation of non-equilibrium recombination including the 2s
state, or for that matter including other states and states of Helium as well,
requires some detailed work. For some details on the hydrogen 2s calcula-
tion you can see [Peebles, Principles of Physical Cosmology, p. 167].

6. PHENOMENOLOGY OF SPECTRAL DISTORTIONS

We have seen that recombination itself creates a high frequency spectral dis-
tortion, which will probably never be observed. What about other possible
energy releases? What sort of distortions might they produce?

First, recall that at very high temperatures the radiation spectrum will be
thermalized by processes involving changes in photon number and energy.
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These include free-free processes and processes such as e+γ −→ e+2γ, the
so-called double Compton process. These processes effectively thermalize
radiation down to a temperature of about 1 keV. Therefore, no energy re-
lease at temperatures higher than this can leave an imprint on the radiation
spectrum.

At temperatures below 1 keV, Compton scattering is still operating. But as
we have seen, Compton scattering cannot produce a black-body spectrum
if the number density of photons is not appropriate. Therefore an energy
release into the radiation background at this time would lead to a so-called
chemical potential distortion. This means that the spectrum would reach
statistical equilibrium with charged particles, but would have a nonzero
chemical potential, just like a relativistic species with conserved particle
number would have. This distortion is measured in terms of the dimension-
less chemical potential, µ0 = µ/T .

At temperatures low enough that Compton scattering is not operating, en-
ergy releases into the radiation apectrum are not thermalized, so one would
see their imprint directly.

More to the point are late time scattering events. For example, background
photons traversing a region of ionized gas at late times will experience
Compton up-scattering, called ”Comptonization”. Comptonization trans-
fers photons from the Rayleigh-Jeans region to the Wien region. This means
that the Rayleigh-Jeans temperature (”antenna temperature”) will be lower
than that extracted from the Wien region. The temperature decrement in the
Rayleigh-Jeans region is parametrized by a dimensionless parameter y,

∆TRJ = −2yTγ,

where y is determined from an integral along the photon path

y =

∫
dt σComptonne

(
Te − Tγ
Te

)

=

∫
dt σTne

(
Te − Tγ
me

)
.

This formula has a simple interpretation. If you think of the integrand as
dTγ/dt, then we see that the photons have a heating rate which is propor-
tional to the temperature difference, with rate constant set by the micro-
scopic scattering cross section; this is basically just the Newton-Fourier law
of cooling. We expect that such a distortion must be produced at some level
by a hot intergalactic medium. When photons pass through a hot region
such as a cluster of galaxies, the heating is called the Sunyaev-Zeldovich
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effect. As we have discussed, it is not really a thermal heating process be-
cause Compton scattering cannot equilibrate photon number. So this scat-
tering shifts photons from the Rayleigh-Jeans side of the spectrum to the
Wien side.

7. OBSERVATIONS

The Dicke radiometer, which is a differential temperature measurement de-
vice, made possible a few early experiments on the radiation background.
In 1946 Dicke took data at 6 cm ' 20 GHz which gave a limit Tγ < 20 K.
This temperature limit and similar measurements at a single frequency are
”antenna temperature” limits. The antenna temperature is the temperature
which one would assign, given an intensity, assuming the measurement oc-
curs on the Rayleigh-Jeans side of a black-body spectrum.

There is an interesting history of other early observations, some of which
should probably qualify as detections, although cosmological interpreta-
tions were apparently not assigned to them. For instance, Andrew McKel-
lar in 1940 and Walter Adams in 1941 made spectral absorption line mea-
surements of rotational states of interstellar CN which were consistent with
thermal equilibrium at 2.73 K. The lines are at roughly ν ≈ 100 GHz and
ν ≈ 200 GHz, although I believe the early measurements were done only at
100 GHz, which corresponds to the first excited rotational state.

But it was not until the early 1960’s that a group of people began to seri-
ously consider a cosmological background, as it became clear that such a
background could be observable and that this would be an important test
of the hot big bang model. Also, Dicke was interested in measurements to
test Brans-Dicke cosmology, so work began on an apparatus in Princeton
around 1964.

Meanwhile, in Holmdel New Jersey, a 7 cm microwave horn (also a Dicke
radiometer) initially intended for satellite communications continued to show
an excess antenna noise, as reported by E. Ohm in 1961 in a Bell technical
report. In 1965 Penzias and Wilson were trying to use the same telescope
for radio-astronomy observations and also found this noise. But now the
time was right, and after discussions with Dicke’s group the true nature of
this discovery was realized. Two back-to-back papers appeared in Ap. J.
(142, 414 and 419). The first, by the Dicke group, explained the signif-
icance of the measurement, and the second was the Penzias and Wilson
”excess antenna temperature” paper.
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After the initial measurement there was a long history of successive refine-
ments, and the search for fluctuations was on almost immediately. We will
have more to say about fluctuations in later lectures.

The current state of the art for spectral measurements is summarized by the
following data and limits (Smoot and Scott, 1997).

Tγ = 2.728± 0.002 K,

|y| < 1.2× 10−5(95%CL),

|µ0| < 9× 10−5(95%CL),

These represent a global average. The COBE FIRAS temperature itself
is T = 2.728 ± 0.004 K. The temperature and µ distortion numbers are
apparently dominated by the COBE FIRAS analysis. This is not to say
that other measurements are not still important. COBE FIRAS covered the
frequency range 68 GHz – 640 GHz, but it is important to constrain lower
frequency distortions as well.

The measurements at low and high frequencies are hindered by foreground
signals. At low frequencies there is synchrotron and free-free emission from
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ionized regions. At high frequencies there is infrared dust emission from
the Galaxy. Typically one models and then subtracts Galactic emission, but
clearly there is a fundamental limitation to this approach and therefore a
fundamental limitation to sensitivity at these frequencies.

As a final note, it seems that the location of the primordial background
spectrum is fortuitous. A few decades to the right or left and it might well
have been obscured by foreground emissions. But we have become used to
the occasional coincidence in cosmology.
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